This page contains example content for previewing or demonstrating computational content and notebooks, as well as Thebe integration.
Pandas¶
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
dfLoading...
Matplotlib¶
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.scatter(df['A'], df['B'], alpha=0.7)
plt.xlabel('Column A')
plt.ylabel('Column B')
plt.title('Scatter Plot of DataFrame Columns')
plt.grid(True, alpha=0.3)
plt.show()
Plotly¶
import plotly.express as px
fig = px.scatter(df, x='A', y='B', title='Interactive Scatter Plot with Plotly')
fig.update_layout(
xaxis_title='Column A',
yaxis_title='Column B',
showlegend=False
)
fig.show()Loading...
Altair¶
import altair as alt
chart = alt.Chart(df.reset_index()).mark_circle().encode(
x=alt.X('A:Q', title='Column A'),
y=alt.Y('B:Q', title='Column B'),
tooltip=['index', 'A', 'B']
).properties(
title='Interactive Chart with Altair',
width=400,
height=300
)
chartLoading...
Bokeh¶
from bokeh.plotting import figure, show
from bokeh.io import output_notebook
# Configure Bokeh to display plots inline
output_notebook()
# Create the plot
p = figure(width=400, height=300, title='Interactive Scatter Plot with Bokeh')
p.scatter(df['A'], df['B'], size=8, alpha=0.7, color='navy')
# Customize the plot
p.xaxis.axis_label = 'Column A'
p.yaxis.axis_label = 'Column B'
p.grid.grid_line_alpha = 0.3
show(p)Loading...